216 research outputs found

    Effects of wastewater treatment plant effluent inputs on planktonic metabolic rates and microbial community composition in the Baltic Sea

    Get PDF
    The Baltic Sea is the world's largest area suffering from eutrophication-driven hypoxia. Low oxygen levels are threatening its biodiversity and ecosystem functioning. The main causes for eutrophication-driven hypoxia are high nutrient loadings and global warming. Wastewater treatment plants (WWTP) contribute to eutrophication as they are important sources of nitrogen to coastal areas. Here, we evaluated the effects of wastewater treatment plant effluent inputs on Baltic Sea planktonic communities in four experiments. We tested for effects of effluent inputs on chlorophyll <i>a</i> content, bacterial community composition, and metabolic rates: gross primary production (GPP), net community production (NCP), community respiration (CR) and bacterial production (BP). Nitrogen-rich dissolved organic matter (DOM) inputs from effluents increased bacterial production and decreased primary production and community respiration. Nutrient amendments and seasonally variable environmental conditions lead to lower alpha-diversity and shifts in bacterial community composition (e.g. increased abundance of a few cyanobacterial populations in the summer experiment), concomitant with changes in metabolic rates. An increase in BP and decrease in CR could be caused by high lability of the DOM that can support secondary bacterial production, without an increase in respiration. Increases in bacterial production and simultaneous decreases of primary production lead to more carbon being consumed in the microbial loop, and may shift the ecosystem towards heterotrophy

    Coupling between bacterioplankton species composition, population dynamics, and organic matter degradation

    Full text link
    To study the effect of substrate addition on short term bacterial population dynamics and species composition in seawater, mesocosms were maintained with water collected off Scripps Pier (La Jolla, California, USA). Protein enrichment (BSA) triggered a dynamic response from the microbial food web, whereas enrichment with starch had no effect. In the protein enriched mesocosm the number of both nucleoid-containing cells and metabolically active cells increased by 3.0 x 10(5) cells ml(-1) from Day 1 to Day 4. In the same time period the density of a set of 31 phylogenetically different bacteria (alpha- and gamma-Proteobacteria as well as Flexibacter-Cytophaga-Bacteroides) increased by 3.5 x 10(5) cells ml(-1). The abundance of these isolated bacteria accounted for up to 89 % of the nucleoid-containing cells, and up to 22 % of the total counts. Increased enzyme activities, most notably protease, were found concomitant with a change in bacterial species composition over 3 d. This short term succession was possible due to rapid net growth rates of single bacterial species in the mesocosm (0.48 to 1.6 d(-1)), which was up to 5 times higher than the community turnover calculated from bacterial production and total counts. These results should provide support for studies of actual bacterial population dynamics on the species level and its role in the degradation of organic matter in the aquatic environment

    Oxygen-deficient water zones in the Baltic Sea promote uncharacterized Hg methylating microorganisms in underlying sediments

    Get PDF
    Human-induced expansion of oxygen-deficient zones can have dramatic impacts on marine systems and its resident biota. One example is the formation of the potent neurotoxic methylmercury (MeHg) that is mediated by microbial methylation of inorganic divalent Hg (Hg-II) under oxygen-deficient conditions. A negative consequence of the expansion of oxygen-deficient zones could be an increase in MeHg production due to shifts in microbial communities in favor of microorganisms methylating Hg. There is, however, limited knowledge about Hg-methylating microbes, i.e., those carrying hgc genes critical for mediating the process, from marine sediments. Here, we aim to study the presence of hgc genes and transcripts in metagenomes and metatranscriptomes from four surface sediments with contrasting concentrations of oxygen and sulfide in the Baltic Sea. We show that potential Hg methylators differed among sediments depending on redox conditions. Sediments with an oxygenated surface featured hgc-like genes and transcripts predominantly associated with uncultured Desulfobacterota (OalgD group) and Desulfobacterales (including Desulfobacula sp.) while sediments with a hypoxic-anoxic surface included hgc-carrying Verrucomicrobia, unclassified Desulfobacterales, Desulfatiglandales, and uncharacterized microbes. Our data suggest that the expansion of oxygen-deficient zones in marine systems may lead to a compositional change of Hg-methylating microbial groups in the sediments, where Hg methylators whose metabolism and biology have not yet been characterized will be promoted and expand

    Global Patterns of Bacterial Beta-Diversity in Seafloor and Seawater Ecosystems

    Get PDF
    Background Marine microbial communities have been essential contributors to global biomass, nutrient cycling, and biodiversity since the early history of Earth, but so far their community distribution patterns remain unknown in most marine ecosystems. Methodology/Principal Findings The synthesis of 9.6 million bacterial V6-rRNA amplicons for 509 samples that span the global ocean's surface to the deep-sea floor shows that pelagic and benthic communities greatly differ, at all taxonomic levels, and share <10% bacterial types defined at 3% sequence similarity level. Surface and deep water, coastal and open ocean, and anoxic and oxic ecosystems host distinct communities that reflect productivity, land influences and other environmental constraints such as oxygen availability. The high variability of bacterial community composition specific to vent and coastal ecosystems reflects the heterogeneity and dynamic nature of these habitats. Both pelagic and benthic bacterial community distributions correlate with surface water productivity, reflecting the coupling between both realms by particle export. Also, differences in physical mixing may play a fundamental role in the distribution patterns of marine bacteria, as benthic communities showed a higher dissimilarity with increasing distance than pelagic communities. Conclusions/Significance This first synthesis of global bacterial distribution across different ecosystems of the World's oceans shows remarkable horizontal and vertical large-scale patterns in bacterial communities. This opens interesting perspectives for the definition of biogeographical biomes for bacteria of ocean waters and the seabed

    Experimental Incubations Elicit Profound Changes in Community Transcription in OMZ Bacterioplankton

    Get PDF
    Sequencing of microbial community RNA (metatranscriptome) is a useful approach for assessing gene expression in microorganisms from the natural environment. This method has revealed transcriptional patterns in situ, but can also be used to detect transcriptional cascades in microcosms following experimental perturbation. Unambiguously identifying differential transcription between control and experimental treatments requires constraining effects that are simply due to sampling and bottle enclosure. These effects remain largely uncharacterized for “challenging” microbial samples, such as those from anoxic regions that require special handling to maintain in situ conditions. Here, we demonstrate substantial changes in microbial transcription induced by sample collection and incubation in experimental bioreactors. Microbial communities were sampled from the water column of a marine oxygen minimum zone by a pump system that introduced minimal oxygen contamination and subsequently incubated in bioreactors under near in situ oxygen and temperature conditions. Relative to the source water, experimental samples became dominated by transcripts suggestive of cell stress, including chaperone, protease, and RNA degradation genes from diverse taxa, with strong representation from SAR11-like alphaproteobacteria. In tandem, transcripts matching facultative anaerobic gammaproteobacteria of the Alteromonadales (e.g., Colwellia) increased 4–13 fold up to 43% of coding transcripts, and encoded a diverse gene set suggestive of protein synthesis and cell growth. We interpret these patterns as taxon-specific responses to combined environmental changes in the bioreactors, including shifts in substrate or oxygen availability, and minor temperature and pressure changes during sampling with the pump system. Whether such changes confound analysis of transcriptional patterns may vary based on the design of the experiment, the taxonomic composition of the source community, and on the metabolic linkages between community members. These data highlight the impressive capacity for transcriptional changes within complex microbial communities, underscoring the need for caution when inferring in situ metabolism based on transcript abundances in experimental incubations

    Time-course analysis of the Shewanella amazonensis SB2B proteome in response to sodium chloride shock

    Get PDF
    Shewanellae are microbial models for environmental stress response; however, the sequential expression of mechanisms in response to stress is poorly understood. Here we experimentally determine the response mechanisms of Shewanella amazonensis SB2B during sodium chloride stress using a novel liquid chromatography and accurate mass-time tag mass spectrometry time-course proteomics approach. The response of SB2B involves an orchestrated sequence of events comprising increased signal transduction associated with motility and restricted growth. Following a metabolic shift to branched chain amino acid degradation, motility and cellular replication proteins return to pre-perturbed levels. Although sodium chloride stress is associated with a change in the membrane fatty acid composition in other organisms, this is not the case for SB2B as fatty acid degradation pathways are not expressed and no change in the fatty acid profile is observed. These findings suggest that shifts in membrane composition may be an indirect physiological response to high NaCl stress

    The energy–diversity relationship of complex bacterial communities in Arctic deep-sea sediments

    Get PDF
    The availability of nutrients and energy is a main driver of biodiversity for plant and animal communities in terrestrial and marine ecosystems, but we are only beginning to understand whether and how energy–diversity relationships may be extended to complex natural bacterial communities. Here, we analyzed the link between phytodetritus input, diversity and activity of bacterial communities of the Siberian continental margin (37–3427 m water depth). Community structure and functions, such as enzymatic activity, oxygen consumption and carbon remineralization rates, were highly related to each other, and with energy availability. Bacterial richness substantially increased with increasing sediment pigment content, suggesting a positive energy–diversity relationship in oligotrophic regions. Richness leveled off, forming a plateau, when mesotrophic sites were included, suggesting that bacterial communities and other benthic fauna may be structured by similar mechanisms. Dominant bacterial taxa showed strong positive or negative relationships with phytodetritus input and allowed us to identify candidate bioindicator taxa. Contrasting responses of individual taxa to changes in phytodetritus input also suggest varying ecological strategies among bacterial groups along the energy gradient. Our results imply that environmental changes affecting primary productivity and particle export from the surface ocean will not only affect bacterial community structure but also bacterial functions in Arctic deep-sea sediment, and that sediment bacterial communities can record shifts in the whole ocean ecosystem functioning

    Interactive Effect of UVR and Phosphorus on the Coastal Phytoplankton Community of the Western Mediterranean Sea: Unravelling Eco- Physiological Mechanisms

    Get PDF
    Versión del editor4,411

    Bacterioplankton drawdown of coral mass-spawned organic matter

    Get PDF
    Coral reef ecosystems are highly sensitive to microbial activities that result from dissolved organic matter (DOM) enrichment of their surrounding seawater. However, the response to particulate organic matter (POM) enrichment is less studied. In a microcosm experiment, we tested the response of bacterioplankton to a pulse of POM from the mass-spawning of Orbicella franksi coral off the Caribbean coast of Panama. Particulate organic carbon (POC), a proxy measurement for POM, increased by 40-fold in seawater samples collected during spawning; 68% degraded within 66 h. The elevation of multiple hydrolases presumably solubilized the spawn-derived POM into DOM. A carbon budget constructed for the 275 µM of degraded POC showed negligible change to the concentration of dissolved organic carbon (DOC), indicating that the DOM was readily utilized. Fourier transform ion cyclotron resonance mass spectrometry shows that the DOM pool became enriched with heteroatom-containing molecules, a trend that suggests microbial alteration of organic matter. Our sensitivity analysis demonstrates that bacterial carbon demand could have accounted for a large proportion of the POC degradation. Further, using bromodeoxyuridine immunocapture in combination with 454 pyrosequencing of the 16S ribosomal RNA gene, we surmise that actively growing bacterial groups were the primary degraders. We conclude that coral gametes are highly labile to bacteria and that such large capacity for bacterial degradation and alteration of organic matter has implications for coral reef health and coastal marine biogeochemistry
    corecore